对解剖学随时间变化的结构变化的临床研究可能会大大受益于人群水平的形状量化或时空统计形状建模(SSM)。这样的工具使患者器官周期或疾病进展相关的工具与群体有关。构造形状模型需要建立定量形状表示(例如,相应的地标)。基于粒子的形状建模(PSM)是一种数据驱动的SSM方法,可通过优化地标放置来捕获总体级别的形状变化。但是,它假设横断面研究设计,因此在代表形状随时间变化方面的统计能力有限。现有的建模时空或纵向形状变化的方法需要预定义的形状地图集和通常在横截面上构建的预先建造的形状模型。本文提出了一种受PSM方法启发的数据驱动方法,以直接从形状数据中学习人口级时空形状。我们介绍了一种新型的SSM优化方案,该方案产生了整个人群(受试者间)和跨时间序列(受试者内)的地标。我们将所提出的方法应用于心房 - 纤维化患者的4D心脏数据,并证明其在表示左心房动态变化方面的功效。此外,我们表明我们的方法在生成时间序列模型(线性动力学系统(LDS))方面优于时空SSM的基于图像的方法。 LDS使用通过我们的方法优化的时空形状模型拟合,可提供更好的概括和特异性,表明它准确地捕获了基本的时间依赖性。
translated by 谷歌翻译
统计形状建模(SSM)是一种有价值且强大的工具,可以生成复杂解剖结构的详细表示,该解剖结构可以实现定量分析和形状及其变化的比较。 SSM应用数学,统计和计算来将形状解析为定量表示(例如对应点或地标),这些表示将有助于回答有关整个人群解剖学变化的各种问题。复杂的解剖结构具有许多不同的部分,具有不同的相互作用或复杂的结构。例如,心脏是四腔解剖结构,腔室之间有几个共同的边界。对于在整个身体中充分灌注末端器官,必要的心脏腔室的协调和有效收缩是必要的。这些心脏共享边界内的细微形状变化可以表明潜在的病理变化,导致不协调的收缩和末端器官灌注不良。早期检测和稳健的量化可以洞悉理想的治疗技术和干预时机。但是,现有的SSM方法无法明确对共享边界的统计数据进行建模。本文提出了一种通用且灵活的数据驱动方法,用于构建具有共同边界的多器官解剖结构的统计形状模型,可捕获单个解剖学及其在整个人群中共享边界表面的形态和对齐变化。我们通过开发形状模型来证明使用双脑室心脏数据集的提议方法的有效性,从而在整个人群数据中始终如一地参数化心脏双脑室结构和介入的室内隔膜(共享边界表面)。
translated by 谷歌翻译
高维数据的歧管假设假设数据是通过改变从低维潜在空间获得的一组参数而生成的。深层生成模型(DGM)被广泛用于以无监督的方式学习数据表示。 DGM使用瓶颈体系结构(例如变异自动编码器(VAE))参数化数据空间中的基础低维歧管。 VAE的瓶颈尺寸被视为取决于数据集的超参数,并在广泛调整后在设计时间固定。由于大多数实际数据集的内在维度尚不清楚,因此固有维度与选择为超参数的潜在维度之间存在不匹配。这种不匹配可能会对表示形式学习和样本生成任务的模型性能产生负面影响。本文提出了相关性编码网络(RENS):一种新型的基于VAE的概率VAE框架,该框架在潜在空间中使用自动相关性确定(ARD)来学习数据特定的瓶颈维度。每个潜在维度的相关性是直接从数据以及使用随机梯度下降的其他模型参数以及适合非高斯先验的重新聚集技巧的其他模型参数中学到的。我们利用深处的概念来捕获数据和潜在空间中的置换统计属性,以确定相关性。所提出的框架是一般且灵活的,可用于最先进的VAE模型,该模型利用正规化器在潜在空间中施加特定特征(例如,脱离)。通过对合成和公共图像数据集进行了广泛的实验,我们表明,所提出的模型了解了相关的潜在瓶颈维度,而不会损害样品的表示和发电质量。
translated by 谷歌翻译
统计形状建模是解剖学群体定量分析的重要工具。点分布模型(PDMS)通过密集的相应关系,直观且易于使用的形状表示来表示解剖表面,用于后续应用。这些对应关系在两个坐标空间中展出:局部坐标,其描述每个单独解剖表面的几何特征和代表在给定队列中的样本的全局对准差异之后表示人口级统计形状信息的世界坐标。我们提出了一种基于深度学习的框架,它同时从容积图像中直接学习这两个坐标空间。建议的联合模型用于双重目的;世界界据可以直接用于形状分析应用,避免了传统PDM模型中涉及的重预处理和分段。另外,本地对应关系可用于解剖分段。我们展示了这种联合模型在推断解剖表面时形成了两个数据集的形状建模应用的效果。
translated by 谷歌翻译
在目前的生物和医学研究中,统计形状建模(SSM)提供了解剖/形态学表征的基本框架。这种分析通常通过识别群体样本中发现的相对少量的几何一致性特征来驱动。这些特征随后可以提供有关人口形状变化的信息。密集的对应模型可以提供易于计算,并在后面减小时产生可解释的低维形状描述符。然而,用于获得这种对应关系的自动方法通常需要图像分割,然后是显着的预处理,这在计算和人力资源方面都是征税。在许多情况下,分段和后续处理需要手动指导和解剖学特定域专业知识。本文提出了一种自我监督的深度学习方法,用于发现可以直接用作形状描述符的图像中的地标进行分析。我们使用地标驱动的图像登记作为主要任务,以强制神经网络发现井注册图像的地标。我们还提出了一个正则化术语,允许对神经网络的稳健优化进行稳健优化,并确保地标均匀跨越图像域。所提出的方法避免分割和预处理,并直接使用仅2D或3D图像产生可用的形状描述符。此外,我们还提出了在训练损失函数上提出了两个变体,允许将现有的形状信息集成到模型中。我们在几个2D和3D数据集上应用此框架以获取其形状描述符,并分析其实用程序以获取各种应用程序。
translated by 谷歌翻译
事实证明,生成对抗网络(GAN)在建模高维数据的分布中有效。但是,他们的训练不稳定性是融合的众所周知的障碍,这导致了他们对新数据的应用实践挑战。此外,即使达到收敛,甘恩也可能会受到模式崩溃的影响,模式崩溃是生成器学会仅建模目标分布的一小部分的现象,而无视绝大多数数据歧管或分布。本文通过引入SETGAN来解决这些挑战,Setgan是一种对抗性架构,该架构处理生成和真实样本的集合,并以灵活的,置换的不变方式区分这些集合的起源(即培训与生成数据)。我们还提出了一个新的指标,以定量评估gan,除了数据本身外,不需要以前的应用程序知识。使用新的度量标准,结合最新的评估方法,我们表明,与来自类似策略的GAN变体相比,所提出的体系结构以同样的方式生成更准确的输入数据模型对高参数设置的敏感性较差。
translated by 谷歌翻译
Demspter-Shafer证据理论中提出的不确定性量化的信念函数方法是基于对集合值观测的一般数学模型,称为随机集。设定值的预测是机器学习中不确定性的最自然表示。在本文中,我们介绍了一个基于对信仰功能的随机解释来模拟深度神经网络中的认知学习的概念。我们提出了一个新型的随机卷积神经网络,用于分类,该网络通过学习设置值的地面真实表示来为类别的分类产生分数。我们评估信仰功能的熵和距离度量的不同公式,作为这些随机集网络的可行损失函数。我们还讨论了评估认知预测质量和认知随机神经网络的表现的方法。我们通过实验证明,与传统的估计不确定性相比,认知方法可以产生更好的性能结果。
translated by 谷歌翻译